direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publications

A computational model for predicting perceived musical expression in branding scenarios
Zitatschlüssel lepa_computational_2020
Autor Lepa, Steffen and Herzog, Martin and Steffens, Jochen and Schoenrock, Andreas and Egermann, Hauke
Seiten 387–402
Jahr 2020
ISSN 0929-8215
DOI 10.1080/09298215.2020.1778041
Journal Journal of New Music Research
Jahrgang 49
Nummer 4
Monat aug
Notiz Publisher: Routledge _eprint: https://doi.org/10.1080/09298215.2020.1778041
Zusammenfassung We describe the development of a computational model predicting listener-perceived expressions of music in branding contexts. Representative ground truth from multi-national online listening experiments was combined with machine learning of music branding expert knowledge, and audio signal analysis toolbox outputs. A mixture of random forest and traditional regression models is able to predict average ratings of perceived brand image on four dimensions. Resulting cross-validated prediction accuracy (R²) was Arousal: 61\%, Valence: 44\%, Authenticity: 55\%, and Timeliness: 74\%. Audio descriptors for rhythm, instrumentation, and musical style contributed most. Adaptive sub-models for different marketing target groups further increase prediction accuracy.
Link zur Publikation Download Bibtex Eintrag

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.